台灣地區中長距離 GPS 動態定位成果與精度分析 Analyzing and Estimating of Medium-Range GPS Kinematic Positioning in the Taiwan Area

陳宏宇¹ 余水倍² 陳鶴欽³ 曾耀賢⁴ Horng-Yue Chen Shui-Beih Yu He-Chin Chen Yao-Hsien Tseng

摘要

為了解台灣東部地區實施海底大地測量,可佈設海底音波回應器陣列位置 與陸地的容許最遠距離為何;於2008年中,我們設計一個陸上GPS動態定位實 驗。以中研院地球所六樓樓頂平台為實驗場地,旁邊8m範圍內有S101衛星固 定站天線柱。結合野外測試場的動態測量資料,測試設計距離由11km至256 km。與S101衛星固定站的動態成果比較,其整體的平均南北向較差為-6±23 mm、東西向為-18±48 mm、高程向為21±73 mm。另於2008年10月及2009年 3月,實際計算宜蘭東方約80 km外海,及花蓮東方約100 km外海的動態定位 結果。經比較兩種動態定位軟體(Bernese V5.0及GrafNav),宜蘭外海的較差在 南北向為3±16 mm,東西向為8±22 mm,高程向為27±44 mm;而花蓮外海的較 差在南北向的差異為-6±18 mm,東西向的差異為14±14 mm,高程向為35±28 mm。由此實測資料可發現,南北向的較差略優於東西向,而高程向的較差小於 4cm。

關鍵詞:中長距離 GPS 動態定位、衛星固定站、海底大地測量

Abstract

To understand the limitation distance of medium-range GPS kinematic positioning for the sea-floor geodesy, an on-land experiment with relative distance from 8 m to 256 km, has been conducted and two experiments off-Hualien with distance of 100 km and off-Ilan with distance of 80 km have been conducted in October 2008 and March 2009. For the on-land kinematic GPS experiment, the true values are acquired from S101, one of the CORS near the experiment field (only about 8 meters away). Results from other stations in the range of 11 km to 256 km are compared with true values. The accuracies are 2 ± 14 mm in the north-south component, -28 ± 33 mm in the east-west component and 7 ± 43 mm in the up component. For the off-Ilan and off-Hualien experiments, the results are computed by Bernese V5.0 and GrafNav V8.0. The differences are 1 ± 24 mm in the north-south component, 15 ± 44 mm in the east-west component and 22 ± 75 mm in the up component for the

中央研究院地球科學研究所 研究助技師

² 中央研究院地球科學研究所 研究員

³內政部國土測繪中心 技正

⁴ 內政部國土測繪中心 課長

off-Ilan experiment, and -6 ± 18 mm in the north-south component, 14 ± 14 mm in the east-west component and 35 ± 28 mm in the up component for the off-Hualien experiment, respectively. From the above experiences, the accuracy of north-south component is better than east-west component, and the up component is less than 4 cm.

Keyword: Medium-range kinematic GPS positioning, CORS, Seafloor geodesy

一、前言

GPS 相對定位自 1980年代問世以 來,應用於各個領域,由於短距離的 相對定位,可由差分觀測量消除大部 分的誤差,因此無須考慮大氣折射誤 差所造成的影響 (Melbourne, 1985; Remondi, 1985; 1988; Wubbena, 1985) • 但伴隨相對距離的增加,與距離相關 的誤差漸增(如軌道誤差、電離層、 對流層等),使得 GPS 訊號的整數特 性,不易獲得(Blewitt,1989)。因此中 長距離的相對定位 (使用精密星曆的 假設下,大氣折射誤差影響整數週波 值的求得), 變得富挑戰性。其中大氣 折射誤差扮演關鍵的角色,因為它會 因相對距離、地理位置、季節以及時 間的不同,而有差異。一旦此系統誤 差被精確推估,其相對位置也可精密 獲得,因此其應用也更加廣泛。於大 地測量方面如 SCIGN(The Southern California Integrated GPS Network) . GEONET (GPS Earth Observation Network System), 等監測網, 大量使 用靜態定位於板塊變形監測。而結合 水下音波與 GPS 動態定位的海底大地 測量方法,亦應用於加拿大、智利及 日本外海的海底板塊變形監測(Spiess et al., 1998; Gagnon et al., 2005; Ikuta et. al., 2008) •

而計算此中長距離的動態定位所 使用軟體有 GAMIT 的 TRACK (Sato et al., 2006)、GIYSY OASIS II (Kido et al., 2006)、GrafNav (Ikuta et. al., 2008) 以及自行發展 (Asada and Yabuki, 2001; 源於 Colombo (1998)推導的定 位原理)。儘管使用的軟體不同,文中 關於一百公里的相對定位,其平面中 誤差約3 cm,而高程誤差約10 cm。 由於高緯度地區大氣折射誤差相對較 小,能否適用於低緯度的電離層、對 流層變化劇烈的地區,仍須驗證。

因此本文關於台灣地區中長距離 的動態定位研究,利用台灣連續追蹤 站依不同距離、位置等分析其定位精 度。採用的動態計算軟體以 Bernese V5.0為主,修改以適合本研究,並比 較 GrafNav (NovAtel's Waypoint Products)的動態解算成果,資料採樣 率為1秒。其中的測試資料是利用台 灣地區連續追蹤站的資料,並結合野 外測試場的動態測量資料,以測試不 同距離、位置等分析其定位精度。關 於海上動態定位的方法設計,本研究 採用的陸上參考站為至少有二部以上 雙頻接收儀,以獲取船舶的動態定位 資料。

二、海底大地测量的原理

太空測地技術(Space geodesy)包 括超長基線干涉術(VLBI)、衛星雷射 測距(SLR)、及全球定位系統(GPS) 等的發展與進步,使科學家得以藉全 球觀測網進行地殼動力學研究,以了 解板塊的運動與變形。此項技術更使 得傳統大地測量有革命性的改變,相 距數百至數千公里以上的大陸或島嶼 之間可聯測在同一坐標系統。但涵蓋 地球表面約 70%的海洋卻無法直接應 用太空測地技術獲得所需觀測資料, 故有建立海底控制點的必要性。

台灣四面環海,又位於歐亞與菲 律賓海兩板塊的活動邊界上;在台灣 鄰近的海域實施海底大地測量,以獲 知板塊邊界的變形及其對國家基本控 制測量網的影響程度,更顯其重要性。

海底大地測量是一種結合動態 GPS 測量及水下音波定位技術,測定 海底控制點坐標的觀測方法。由固定 於 船 體 或 浮 台 的 音 波 轉 換 器 (Transducer)發出的音波訊號至海底 音 波回應器(Transponder)的往返走 時,可測定回應器的相對位置。另藉 由船上的GPS測量儀與陸上GPS參考 站的聯測,及船上GPS天線與音波轉 換器的相對位置關係,可推算音波發 射及接收瞬間之音波轉換器大地坐標 (Gagnon et al., 2005)(圖 1)。投置在海 底 之 三 個 精 密 音 波 回 應 器 (Transponder)形成的三角形中心,可視 為一個海底控制點。音波回應器陣列 儘量佈設成正三角形,其外接圓半 徑,即三角形中心(內心)至各回應 器的距離,約等於當地的海水深度。 在數公里的小範圍內,海水的音波速 度構造大致呈水平分層。因此,從音 波回應器陣列中心正上方海面觀測之 陣列中心水平位置,與音波速度的時 間變化無關;音波速度隨時間的變化 只影響陣列中心的垂直位置。

由固定於船體或浮台的音波轉換器(Transducer)發出的音波訊號至海 底音波回應器的往返走時,可測定回 應器的相對位置。使用精密音波轉換 及回應器,往返走時的量測解析度可 達數微秒(µsec),相當於數毫米(mm) 的距離解析力。另藉由船上或浮台的 GPS 測量儀與陸上 GPS 參考站的聯 測,及船上 GPS 天線與音波轉換器的 相對位置關係,可推算音波發射及接 收瞬間之音波轉換器大地坐標。船或 浮台的姿態可由固定於其上的三個 GPS 測量儀,或其他姿態測定儀器獲 知。

圖 1、海底大地測量是一種結合動態 GPS 測量及水下音波定位技術,測定海底控制點坐標的觀測方法

音波測距的部分是利用音波轉換 器和設置在海底的音波回應器之間的 音波信號來測定往返的傳播時間。每 個音波回應器及主要信號中包含了身 分驗證碼,由身分驗證碼可得知訊號 來源。音波轉換器和音波回應器所造 成的聲訊,會依距離及接收訊號位置 而增強,因此音波轉換器和音波回應 器的距離不會影響訊號雜訊比。從多 次的音波信號的送受信中以最小二乘 可推定音波回應器的位置和海中的音 速構造的時間變化。

圖 2 為 GPS 天線及音波轉換器在 船的位置圖之一例,主要天線位於右 舷(antenna R),另外兩組天線分別位於 左舷(antenna L)及船頭(antenna F),形 成一等腰三角形,我們可利用船上的 三組 GPS 天線來計算船的姿態。首先 利用動態 GPS 定位求得 F 與 L 相對於 R 的精確位置,再利用 L1、L2 雙差 (double-difference)消除衛星及接收器 的時鐘誤差。求得主天線與另兩組天 線的相對位置後,利用最小二乘法求 出船的姿態。其天線 F 相對於天線 R 的定位精度為 1.7 cm,L 對 R 則為 1.1 cm(95%信賴區間),根據位置的精度可 求 得 船 旋 轉 角 度 的 精 度 分 別 為, Heading (船首方位角, Δ H)、Pitching (前後搖晃, Δ P)為 0.03 度,Rolling (左 右搖晃, Δ R)為 0.12 度。

由船的姿態及 GPS 天線與音波轉 換器間的距離,可求得音波轉換器在 地球的相對位置。在日本本州西南近 海熊野灘(Kumano Basin)航程例子 中,GPS 天線與音波轉換器間垂直距 離(h)為 7.8 m,水平距離(r)為 2.0 m。各旋轉角度引起的定位誤差可寫成 $\Delta x = (r \sin \Delta H, h \sin \Delta P, h \sin \Delta R)$,其 中 Δx 為定位誤差。由上式可得 Heading(船首方位角)、Pitching(前後 俯仰)、Rolling(左右搖晃)的定位誤差 分別為 0.1 cm、0.4 cm、1.6 cm。

圖 2、GPS 天線及音波轉換器在船的位置(Ikuta et al., 2008)

理論上區域構造應力對於海底所 造成的應變是均匀的,因此可將三組 音波回應器的相對位置視為不變。再 根據海底三組音波回應器所收到的訊 號,依三角形扭曲程度,來定義定位 精度。除非有斷層在附近,否則海底 的應變不會超過 10⁻⁵,而 10⁻⁵ 相當於 音波回應器 2 cm 的位移量。根據下式 可估計多次測量的三組音波回應器的 位移偏差量:

$$\delta x_j = \sqrt{\frac{\frac{3}{\sum} (\Delta x_i - \sum_{k=1}^{3} \Delta x_k / 3)^2}{\frac{i}{3}}} \qquad (1)$$

δX_j:j次測量的定位精度,ΔX_i: 第 i 個音波回應器與另一音波回應器 平均位置的位移量除以總觀測量。

Ikuta et al. (2008) 在日本熊野灘 的基準測站 KMS 進行一年(2004 年 7 月至 2005 年 8 月)六次的測量,所有 的音波走時殘差皆小於 0.05 ms。根據 公式(1)計算得知,除了 2005 年 5 月 18 日的水平精度為 10 cm 外,其他次 測量的水平精度皆小於 6 cm。這些結 果顯示,可經由 GPS 結合音波定位測 量系統,成功值測到由板塊運動或緩 慢的無震滑移所造成的海底地殼變 形,以及同震位移。利用這套測量系 統可更方便、快速的了解海底板塊聚 合的情形。

關於 GPS 長距離動態定位的解算 以 Bernese V5.0 為 主 (Dach et al.,2007),並增修其中關於跳週偵測、 補償時,引進加拿大空間參考系統 (Canadian Spatial Reference System, CSRS)的精密單點定位(PPP)所提供的 動態定位概略近似坐標,以提高解算 的效益,圖 3 為 Bernese 動態定位的計 算流程。

圖 3、Bernese 動態定位的計算流程

三、陸上 GPS 動態定位之測 試及精度分析

為了解未來實施海底大地測量佈 設海底音波回應器陣列位置與陸地的 容許最遠距離為何,我們設計一個陸 上 GPS 動態定位實驗。以中研院地球 所六樓樓頂平台為實驗場地,旁邊 8 m 範圍內有 S101 衛星固定站天線柱,使 用儀器為 Leica MC500 型接收儀及 AT504 choke-ring 天線。另在距實驗場 約16m的天線率定場,架設一個臨時 連續站(AT21),使用 Leica GRX1200 Pro 接收儀及 AT504 choke-ring 天線; 移動站亦採用同型之 Leica GRX1200 Pro 接收儀與 AX1202 GG 天線。約 1.8 m 高之移動站天線架設於一小推車 上,一人拉著推車沿邊長約8 m 的正 方形步行或跑步(圖4),連續數圈, 記錄間隔為 1 秒。以移動站與近距離 (10-20 m)內的兩個固定站聯合解算 而獲得移動站之正確位置做為真值, 另由「台灣 GPS 連續觀測網」中選擇

有一秒觀測資料的 11 站(GOLI、 GS10、LNDO,SHMN、SIND、JUNA、 KAFN、TACH、WUFN、S106及S01R 等),這些測站與S101(台北)之水平 距離為11-256 km(圖5);分別由不 同測站解算移動站之坐標,並與近距 離固定站所得參考值比較,評估解算 精度及容許最遠距離。

本項測試時間段,為 2008 年 DoY 253~254(資料採樣率:1秒;資料 長度:5小時)。經由 Bernese 計算而得 的成果如表一及圖 6°其中圖六繪出其 中適合於台灣地區海底大地測量的基 線長(約 80 至 150 km 之間)的動態成 果,以距實驗場 144 km 固定站(WUFN) 的定位成果減去距實驗場 8 m (S101) 固定站,以計算移動站(ROVE)的動 態結果,左圖為 DoY253 的成果,而 右圖 DoY254 的成果,本圖僅繪出天 線(ROVE)移動時的時間段,由上至下 分別代表南北向、東西向以及高程向 的較差。

圖 4、陸上 GPS 動態定位實驗, 左圖為動態測試的操作情形, 而右圖為動態的軌跡

表一、利用 Bernese V5.0 計算比較不同距離的固定站與鄰近固定站(S101)所計算移動站 (ROVE)的動態成果,其中另一固定站(AT24)亦列入表內

DoY 253				
站名	dN(cm)	dE(cm)	dU(cm)	與移動站的相對距離(km)
AT24	-0.1±0.5	-0.1±0.6	-3.4±1.2	0.020
SIND	-1.9±1.3	-08±1.1	3.5±2.4	11
SHMN	-3.2±1.9	-6.2±1.0	-2.0±2.0	28
LNDO	-4.2±1.7	-5.4±2.1	-3.2±3.8	31
GOLI	-5.2±1.2	-11.3±1.9	-5.8±2.7	38
JUNA	-0.3±1.5	-6.4±0.9	-3.3±3.7	84
KAFN	-2.9±1.4	2.3±1.3	10.8±3.6	127
TACH	-1.3±1.5	2.0±1.2	3.2±4.9	137
WUFN	0.7±3.3	-5.4±2.3	-0.4±3.1	144
S106	-3.4±4.6	-3.6±2.4	-16.9±3.9	255
S01R	2.6±2.1	3.1±1.3	-4.8±8.2	256
DoY 254				
站名	dN(cm)	dE(cm)	dU(cm)	與移動站的相對距離(km)
AT24	0.4±1.1	-2.8±2.2	-3.3±2.0	0.020
SIND	-3.4±1.8	-1.4±1.7	6.4±2.8	11
SHMN	0.9±3.8	5.6±0.8	-13.5±3.1	28
LNDO	0.3±3.7	5.9±2.0	-4.2±6.2	31
GOLI	1.0±2.9	8.1±5.6	-16.0±3.7	38
JUNA	0.6±1.9	-2.6±2.3	-4.9±2.9	84
KAFN	-0.6±1.8	-4.2±4.3	8.5±4.4	127
TACH	0.9±1.3	-3.8±2.6	-1.5±2.6	137
WUFN	1.3±1.3	-4.7±2.6	3.3±2.6	144
S106	4.0±1.3	-7.2±3.4	-1.8±5.9	255

圖 6、WUFU 及 S101 兩站動態成果的較差, 左圖為 DoY253 的成果, 而右圖 DoY254 的成果, 本 圖僅繪出天線(ROVE)移動時的時間段

表一的測試日期為 DoY 253 及 254,但計算的時間段只取移動站 (ROVE)運動時(UTC:05~10)的動態成 果。由較差結果可發現,Bernese V5.0 的動態成果可適用於台灣地區海底大 地測量的基線長(約 80 至 150 km 之 間),以觀測點位 JUNA、KAFN、 TACH、WUFN 為例 (資料由內政部國 土資訊測繪中心提供),在 Bernese V5.0 (DoY 253 及 254)解算之平面及高 程的精度中南北向約為-0.2±1.4 cm、 東西向為-2.8±3.3 cm、高程向為 1.5±5.9 cm。

四、 海上 GPS 動態定位

本研究實施二次海底大地測量,

分別為 2008 年 10 月 2-3 日(DoY 276~277)、2008 年 3 月 11-12 日(DoY 070~071),其中第一次為宜蘭外海動態 GPS 定位測試,而第二次為實施花蓮外海海底大地測量。

4.1 宜蘭外海動態 GPS 定位測試

此次的宜蘭外海動態測量,位於 宜蘭東方約 80 km 的外海。為利於計 算長距離動態 GPS 位置,GPS 接收儀 於出發地的港區內已開始接收訊號。 圖 7 表示整體航程的軌跡圖,其中灰 色四邊形區域,表示投設及量測音波 回應器的區域。圖 7 表示船舶量測時 的軌跡,其中 GPS 接收儀的採樣率為 1Hz。

圖 7、整體航程的軌跡圖,其中灰色四邊形區域,表示投設及量測音波回應器的區域

為比較不同的參考站,對於定位 結果的差異,圖8表示從貢寮站(GOLI) 及南港站(AT24),計算船舶上 SEA5 動態定位的比較結果,其南北向的差 異為-0.3±1.0 cm,東西向的差異為 -1.5±0.9 cm,而高程向為 2.1±2.6 cm。 此結果顯示兩者的差異,水平向小於 1 cm,而高程向約為 2 cm。因此採用不 同的參考站,對動態定位的水平結果 的影響,沒有顯著的差異。

Compare with different reference stations (GOLI and AT24) to estimate rover station, SEA5 on DoY 276 and 277, 2008

圖 8、由貢寮站(GOLI)及南港站(AT24)計算船船上 SEA5 動態定位的比較結果

不同動態解算軟體(GrafNav 及 Bernese V5.0),對於定位結果的差異 比較如圖 9 所示。其南北向的差異為 0.3±1.6 cm,東西向的差異為 0.8±2.2 cm,而高程向為 2.7±4.4 cm。此結果 顯示兩者的差異,水平向小於1 cm, 而高程向約為3 cm,因此採用不同的 解算軟體,對動態定位的水平結果的 影響,沒有顯著的差異。

SEA5 (GrafNav-Bern) on DoY276~277, 2008

4.2 花蓮外海動態 GPS 定位测試

此次實驗的主要任務,為監測花 蓮外海的海底大地測量網,實施長距 離的動態測量。於考慮透空度及空間 分佈最佳狀況下,利用船舶上佈設三 個雙頻 GPS 接收儀,計算載體瞬時的 位置。累積前次長距離動態定位的解 算的經驗,主要以 Bernese V5.0 為主, 配合加拿大空間參考系統的精密單點 定位成果(CSRS-PPP),並利用 GrafNav (加拿大 Waypoint 開發的高精度後處 理解算軟體)的計算成果,以茲檢核。 圖十表示量測的軌跡圖,及花蓮固定 站(SCHN)對於船舶上 SEA5 的長距離 動態定位結果。由圖九的軌跡圖得知 (上圖),整個航程是以漂流的方式觀 測,以減少船舶引擎噪音,造成音波 回應器的觀測誤差。左下圖為測區軌 跡的放大圖,而右下圖為高程差。

圖 9、不同動態解算軟體(GrafNav-BernV5.0)計算船舶上 SEA5 動態定位的比較結果

圖 10、相對於花蓮固定站(SCHN)之整個航程的軌跡圖 (上圖), 左下圖為測區軌跡的放大 圖, 而右下圖為船舶的高程變化

比較長距離動態定位軟體的精度,圖 11 表示 Bernese V5.0 以及 GrafNav 分別固定一個(花蓮(SCHN)) 和 多 個(花 蓮(SCHN)、大 港 口 (KNKO)、豐濱(PING)、蘇澳(SUAO)) 參考站的結果,其中以 Bernese V5.0 多個參考站的結果為主,而得其他解 算法的較差。圖 10 的比較結果顯示, 個別計算法的較差,分別為:

East (H)

 1. 固定一個和多個參考站的結果 (Bernese V5.0): 其南北向的差異為 -0.1±0.8 cm,東西向的差異為 0.1±0.6 cm,高程向為-0.3±2.1 cm。
2.GrafNav 和多個參考站的結果 (Bernese V5.0): 其南北向的差異為 -0.6±1.8 cm,東西向的差異為 1.4±1.4 cm,高程向為 3.5±2.8 cm。 因此可得知,在長距離動態定位 的解算中,利用 Bernese 解算軟體所得的結果,比較固定一個和多個參考站,在水平及高程向的誤差皆小於1

cm,在 GrafNav與 Bernese 解算多個 參考站的結果,在水平向的誤差小於 2 cm,而高程向的差異達 4 cm。

圖 11、GrafNav 及 Bernese V5.0 的固定一個(花蓮(SCHN))和多個(花蓮(SCHN)、大港口 (KNKO)、豐濱(PING)、蘇澳(SUAO))參考站的結果

五、結論

歷經實際的外海測量,在中長距 離的動態定位及載體姿態的計算中, 幾點經驗及結果可提出,以供討論: 1.分析台灣陸上動態測試的定位及較 差結果可發現,80至150km的動態 位置精度中,南北向約為-0.2±1.4 cm、東西向為-2.8±3.3 cm、高程向 為 1.5±5.9 cm。

2.宜蘭外海動態 GPS 定位測試,比較 不同參考站對於定位結果的差異, 從貢寮站(GOLI)及南港站(AT24), 計算船舶上動態定位的比較結果, 顯示兩站的差異,水平向小於 2 cm,而高程向約為5 cm。因此採用 不同的參考站,對動態定位結果的 影響,沒有顯著的差異。

- 3.花蓮外海動態 GPS 定位測試,利用 Bernese 解算軟體所得的結果,比較 固定一個和多個參考站,在水平及 高程向的誤差皆小於 1 cm,分析 GrafNav與Bernese 解算多個參考站 的結果,在水平向的誤差小於 2 cm,而高程向的差異達 4 cm。
- 4.比較長距離動態定位軟體的精度得知,在中長距離GPS動態定位的解算中,CSRS-PPP約有10cm精度的成果,可提供相當好的近似坐標。GrafNav在剛開始測量的一小時前,在南北向的誤差達20cm,而比較固定一個和多個參考站的結果,也會造成2~6cm的差異。

誌謝

能完成此初步結果,除了感謝研 究團隊同仁的支持,於中長距離動態 定位及載具姿態的求解,必須感謝全 球 導 航 服 務 (International GNSS service, IGS, http://igscb.jpl.nasa.gov/) 提供精密星曆,加拿大空間參考系統 (Canadian Spatial Reference System, CSRS, http://www.geod.nrcan.gc.ca/)的 精密單點定位(PPP)提供動態坐標,以 及農委會林務局農林航空測量所郭朗 哲先生、亞新國土科技徐明鎰先生, 提供 GrafNav 解算的成果以利研究。

參考文獻

- Asada A., and Yabuki T., 2001. Centimeter-level positioning on the seafloor, Proc. Japan Acad., Vol. 77, Ser. B, pp. 7-12.
- 2.Blewitt, G., 1989. Carrier phase ambiguity resolution for the global positioning system applied to geodetic

baselines up to 2000 km. Journal of Geophysical Research, Vol. 94, pp. 1187-1203.

- 3.Dach R., Hugentobler U., Fridez P., Meindl M., 2007. Bernese GPS software Version 5.0, pp. 612.
- 4.Colombo, O.L., 1998. In GPS for Geodesy (eds. Teunissen, P.J.E., and Kleusberg, A.) 2nd ed., Springer, New York, pp. 306-314.
- 5.Gagnon, K., Chadwell, C.D., and Norabuena, E., 2005. Measuring the onset of locking in the Peru-Chile trench with GPS and acoustic measurements, Nature, Vol. 434, pp. 205-208.
- 6.Ikuta, R., Tadokora K., Ando M., Okuda T., Sugimoto S., Takatani K., Yada K., and Besana. G.M., 2008. A new GPS-acoustic method for measuring ocean fkoor crustal deformation: Application to the Nankai Trough, Journal of Geophysical Research, Vol. 113, doi:10.1029/2006JB004875.
- 7.Kido, M., Fujimoto, H., Miura, S., Osada, Y., Tsuka, K., and Tabei, T., 2006. Seafloor displacement at Kumano-nada caused by the 2004 off Kii peninsula earthquake, detected through repeated GPS/Acoustic surveys, Earth Planets Space, Vol. 58, pp. 911-915.
- 8.Melbourne, W.G., 1985. The case for ranging in GPS based geodetic system, edited by Clyde Goad, Proc. 1st International Symposium on Precise Positioning with GPS, with GPS Rockville, Maryland, pp. 373-386.
- 9.Remondi, B.W., 1985. Performing centimeter accuracy relative surveys in

seconds using GPS carrier phase, editd by Clyde Goad, Proc. 1st International Symposium on precise positioning with GPS, with GPS Rockville, Maryland, pp. 789-797.

- 10.Remondi, B.W., 1988. Kinematic and pseudo-kinematic GPS, 1st Int. Tech. Meeting of the Satellite Division of the U.S. Inst. of Navigation GPS ION'88, Colorado Springs, Colorado, 19-23 September, pp. 115-121.
- Sato, K., Hashimoto, M., and Hoso, Y., 2006. Development of a monitoring technique of anomalous crustal deformations, Annual of Disas. Prev. Inst., Koto Univ., No.49C, pp. 197-209.
- 12.Spiess, F.N., Chadwel,1 C.D., Hildebrand, J.A., Young, L.E., Purcell, Jr. G.H., and Dragert, H., 1998. Precise GPS/acoustic positioning of seafloor reference points for tectonic studies, Physics of the Earth and Planetary Interiors, Vol. 108, pp. 101-112
- 13.Wubbena, G., 1985. Software developments for geodetic positioning with GPS using TI 4000 code and carrier measurements, edited by Clyde Goad, Proc. 1st International Symposium on Precise Positioning with GPS, with GPS Rockville, Maryland, pp. 403-412.